26 research outputs found

    Two-Way Neural Machine Translation: A Proof of Concept for Bidirectional Translation Modeling using a Two-Dimensional Grid

    Full text link
    Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidirectional translation, i.e., both source-to-target and target-to-source translation using a single model. If we exclude some pioneering attempts, such as multilingual systems, all other bidirectional translation approaches are required to train two individual models. This paper proposes to build a single end-to-end bidirectional translation model using a two-dimensional grid, where the left-to-right decoding generates source-to-target, and the bottom-to-up decoding creates target-to-source output. Instead of training two models independently, our approach encourages a single network to jointly learn to translate in both directions. Experiments on the WMT 2018 German↔\leftrightarrowEnglish and Turkish↔\leftrightarrowEnglish translation tasks show that the proposed model is capable of generating a good translation quality and has sufficient potential to direct the research.Comment: 6 pages, accepted at SLT202

    Tight Integrated End-to-End Training for Cascaded Speech Translation

    Full text link
    A cascaded speech translation model relies on discrete and non-differentiable transcription, which provides a supervision signal from the source side and helps the transformation between source speech and target text. Such modeling suffers from error propagation between ASR and MT models. Direct speech translation is an alternative method to avoid error propagation; however, its performance is often behind the cascade system. To use an intermediate representation and preserve the end-to-end trainability, previous studies have proposed using two-stage models by passing the hidden vectors of the recognizer into the decoder of the MT model and ignoring the MT encoder. This work explores the feasibility of collapsing the entire cascade components into a single end-to-end trainable model by optimizing all parameters of ASR and MT models jointly without ignoring any learned parameters. It is a tightly integrated method that passes renormalized source word posterior distributions as a soft decision instead of one-hot vectors and enables backpropagation. Therefore, it provides both transcriptions and translations and achieves strong consistency between them. Our experiments on four tasks with different data scenarios show that the model outperforms cascade models up to 1.8% in BLEU and 2.0% in TER and is superior compared to direct models.Comment: 8 pages, accepted at SLT202

    Take the Hint: Improving Arabic Diacritization with Partially-Diacritized Text

    Full text link
    Automatic Arabic diacritization is useful in many applications, ranging from reading support for language learners to accurate pronunciation predictor for downstream tasks like speech synthesis. While most of the previous works focused on models that operate on raw non-diacritized text, production systems can gain accuracy by first letting humans partly annotate ambiguous words. In this paper, we propose 2SDiac, a multi-source model that can effectively support optional diacritics in input to inform all predictions. We also introduce Guided Learning, a training scheme to leverage given diacritics in input with different levels of random masking. We show that the provided hints during test affect more output positions than those annotated. Moreover, experiments on two common benchmarks show that our approach i) greatly outperforms the baseline also when evaluated on non-diacritized text; and ii) achieves state-of-the-art results while reducing the parameter count by over 60%.Comment: Arabic text diacritization, partially-diacritized text, Arabic natural language processin

    A comparative study on end-to-end speech to text translation

    No full text
    corecore